Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Methyl-2H-1,2-benzothiazin-4(3H)one 1,1-dioxide

Waseeg Ahmad Siddigui,^a Saeed Ahmad,^b Hamid Latif Siddiqui,^c Muhammad Ilyas Tariq^a and Masood Parvez^d*

^aDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, ^bDepartment of Chemistry, University of Science and Technology, Bannu, Pakistan, ^cInstitute of Chemistry, University of the Punjab, Lahore, Pakistan, and ^dDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4

Correspondence e-mail: parvez@ucalgary.ca

Received 26 October 2007; accepted 30 October 2007

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.005 Å; R factor = 0.051; wR factor = 0.124; data-to-parameter ratio = 16.2.

In the title compound, C₉H₉NO₃S, the thiazine ring adopts a half-chair conformation. The structure is stabilized by an extensive hydrogen-bonded network involving two intramolecular and three intermolecular interactions.

Related literature

For related literature, see: Bernstein et al. (1994); Kwon & Park (1996); Lombardino & Wiseman (1972); Croce et al. (1992); Consonni et al. (1990); Siddiqui, Ahmad, Khan & Siddiqui (2007); Siddiqui, Ahmad, Khan, Siddiqui & Ahmad (2007); Siddiqui et al. (2007a,b); Siddiqui, Ahmad, Siddiqui, Khan & Parvez (2007); Cremer & Pople (1975); Siddiqui et al. (2006).

Experimental

Crystal data C₉H₉NO₃S $M_r = 211.23$ Orthorhombic, P2₁2₁2₁ a = 6.778 (5) Å b = 8.634 (6) Å c = 15.704 (10) Å

 $V = 919.0 (11) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 0.33 \text{ mm}^{-1}$ T = 173 (2) K $0.12 \times 0.10 \times 0.08 \text{ mm}$

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SORTAV; Blessing, 1997) $T_{\min} = 0.962, \ T_{\max} = 0.974$

6478 measured reflections 2075 independent reflections

1692 reflections with $I > 2 \sigma(I)$ $R_{\rm int} = 0.045$

Refinement	
------------	--

$R[F^2 > 2\sigma(F^2)] = 0.051$	$\Delta \rho_{\rm max} = 0.70 \text{ e } \text{\AA}^{-3}$
$wR(F^2) = 0.125$	$\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$
S = 1.09	Absolute structure: Flack (1983),
2075 reflections	848 Friedel pairs
128 parameters	Flack parameter: -0.14 (15)
H-atom parameters constrained	• • • • • •

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D{\cdots}A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C5-H5\cdots O3^{i}$	0.95	2.55	3.467 (5)	164
C8−H8A···O3 ⁱⁱ	0.99	2.42	3.240 (5)	140
C9−H9A···O3 ⁱⁱⁱ	0.98	2.40	3.226 (5)	141
$C8 - H8A \cdots O2$	0.99	2.58	2.933 (5)	101
$C9 - H9B \cdots O3$	0.98	2.49	2.865 (5)	102
Symmetry codes: $-x, y - \frac{1}{2}, -z + \frac{3}{2}.$	(i) $-x + \frac{1}{2}, -$	$y + 1, z + \frac{1}{2};$	(ii) $-x + 1, y - 2$	$\frac{1}{2}, -z + \frac{3}{2};$ (iii)

Data collection: COLLECT (Hooft, 1998); cell refinement: HKL DENZO (Otwinowski & Minor, 1997); data reduction: SCALE-PACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SAPI91 (Fan, 1991); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2541).

References

- Bernstein, J., Etter, M. C. & Leiserowitz, L. (1994). Structure Correlation, edited by H.-B. Bürgi & J. D. Dunitz, Vol. 2. pp. 431-507. New York: VCH. Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.
- Consonni, R., Croce, P. D. & Ferraccioli, R. (1990). J. Heterocyl. Chem. 27, 427-431.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Croce, P. D., Ferraccioli, R. & La Rosa, C. (1992). Synth. Commun. 22, 2621-2624
- Fan, H.-F. (1991). SAPI91. Rigaku Corporation, Tokyo, Japan.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kwon, S. K. & Park, M. S. (1996). Arzneim. Forsch. 46, 966-971.
- Lombardino, J. G. & Wiseman, E. H. (1972). J. Med. Chem. 15, 848-849.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Siddiqui, W. A., Ahmad, S., Khan, I. U. & Siddiqui, H. L. (2007). Synth. Commun. 37, 767-773.
- Siddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Ahmad, V. U. (2007). J. Chem. Soc. Pak. 29, 44-47.
- Siddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Parvez, M. (2007). Acta Cryst. E63, 04116.
- Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007a). Acta Cryst. E63, 04001.
- Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007b). Acta Cryst. E63, 04117.
- Siddiqui, W. A., Ahmad, S., Ullah, I. & Malik, A. (2006). J. Chem. Soc. Pak. 28, 583-589.

supplementary materials

Acta Cryst. (2007). E63, 04585 [doi:10.1107/S1600536807054736]

2-Methyl-2H-1,2-benzothiazin-4(3H)-one 1,1-dioxide

W. A. Siddiqui, S. Ahmad, H. L. Siddiqui, M. I. Tariq and M. Parvez

Comment

The term 'oxicam' describes a relatively new enolic acid class of 4-hydroxy-1,2-benzothiazine carboxamides with anti-inflammatory and analgesic properties as tested by Writhing Syndrome (Kwon & Park, 1996). The first member of this class, piroxicam (Lombardino & Wiseman, 1972), was introduced in the United States in 1982 and it gained immediate acceptance and remained among the top 50 prescription drugs for several years. Continuing our investigations in this area (Siddiqui *et al.*, 2006; Siddiqui, Ahmad, Khan, & Siddiqui, 2007; Siddiqui, Ahmad, Khan, Siddiqui & Ahmad, 2007; Siddiqui *et al.*, 2007*a*,b; Siddiqui, Ahmad, Siddiqui, Khan & Parvez, 2007) we report herein the structure of the title compound, (I).

The heterocyclic thiazine ring in (I) (Fig. 1) adopts a half-chair conformation wherein N1 is displaced by -0.685 (4) Å from the plane defined by the remaining atoms in the ring, with puckering parameters (Cremer & Pople, 1975): Q = 0.526 (1) Å, $\theta = 50.1$ (3)° and $\varphi = 54.6$ (5)°. The structure is stabilized by two intramolecular hydrogen bonds C8—H8A···O2 and C9—H9B···O3 that result in graph set patterns S(5) and S(6), respectively (Bernstein *et al.*, 1994); details of hydrogen bonding geometry have been provided in a Table. It is interesting to note that O3 is involved in three rather weak intermolecular interactions of the type C—H···O (Fig. 2).

Experimental

The title compound was synthesized as reported earlier (Roberto *et al.*, 1990; Piero *et al.*, 1992) and was recrystallized from a solution of MeOH at 313 K to obtain colorless crystals.

Refinement

An absolute structure was established by the Flack (1983) method using 848 Friedel pairs; Flack parameter, *x*, was 1.15 (15) for the inverted structure which was therefore, rejected to be the one present in the crystal. H-atoms bonded to C-atoms were included in the refinements at geometrically idealized positions with C—H_{aromatic} type = 0.95, CH₂ type = 0.99 and CH₃ type = 0.98 Å and U_{iso} = 1.2 times U_{eq} of the atoms to which they were bonded. The final difference map was free of any chemically significant features.

Figures

Fig. 1. The molecular structure with displacement ellipsoids plotted at 50% probability level; intramolecular interactions have been indicated by broken lines.

Fig. 2. Part of the crystal structure, showing intermolecular interactions of the type C—H···O; intramolecular interactions have been ignored for clarity.

2-Methyl-2H-1,2-benzothiazin-4(3H)-one 1,1-dioxide

Crystal data

C ₉ H ₉ NO ₃ S	$F_{000} = 440$
$M_r = 211.23$	$D_{\rm x} = 1.527 \ {\rm Mg \ m^{-3}}$
Orthorhombic, $P2_12_12_1$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 2075 reflections
a = 6.778 (5) Å	$\theta = 2.6 - 27.4^{\circ}$
b = 8.634 (6) Å	$\mu = 0.33 \text{ mm}^{-1}$
c = 15.704 (10) Å	T = 173 (2) K
$V = 919.0 (11) \text{ Å}^3$	Prism, colorless
Z = 4	$0.12 \times 0.10 \times 0.08 \text{ mm}$

Data collection

2075 independent reflections
1692 reflections with $I > 2 \sigma(I)$
$R_{\rm int} = 0.045$
$\theta_{\text{max}} = 27.4^{\circ}$
$\theta_{\min} = 2.6^{\circ}$
$h = -8 \rightarrow 8$
$k = -11 \rightarrow 11$
$l = -20 \rightarrow 20$

Refinement

Refinement on F^2

Hydrogen site location: inferred from neighbouring sites

Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.051$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.045P)^{2} + 0.93P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$wR(F^2) = 0.125$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.09	$\Delta \rho_{max} = 0.70 \text{ e } \text{\AA}^{-3}$
2075 reflections	$\Delta \rho_{min} = -0.34 \text{ e } \text{\AA}^{-3}$
128 parameters	Extinction correction: none
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 848 Friedel pairs
Secondary atom site location: difference Fourier map	Flack parameter: -0.14 (15)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Enactional	atomio	acordinator	and	isotropio	0.14	aquinalant	isotuonio	displacement	navamators	182	١
гтасионаі	aiomic	coorainales	ana	isoiropic	or	equivalent	isotropic	uspiacemeni	parameters	(A)	1

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.38859 (14)	0.53500 (10)	0.80195 (6)	0.0257 (2)
01	0.3254 (5)	0.2461 (3)	1.02285 (17)	0.0434 (8)
O2	0.5943 (4)	0.5091 (3)	0.78864 (16)	0.0334 (6)
O3	0.2839 (4)	0.6302 (3)	0.74272 (17)	0.0349 (7)
N1	0.2779 (5)	0.3677 (3)	0.8062 (2)	0.0316 (7)
C1	0.3568 (5)	0.6086 (4)	0.9056 (2)	0.0242 (8)
C2	0.3501 (6)	0.7667 (4)	0.9181 (2)	0.0303 (9)
H2	0.3551	0.8351	0.8708	0.036*
C3	0.3359 (6)	0.8258 (5)	1.0006 (3)	0.0356 (10)
Н3	0.3313	0.9345	1.0097	0.043*
C4	0.3285 (6)	0.7255 (5)	1.0688 (3)	0.0369 (10)
H4	0.3226	0.7658	1.1250	0.044*
C5	0.3296 (5)	0.5657 (4)	1.0563 (2)	0.0306 (9)
Н5	0.3203	0.4979	1.1038	0.037*
C6	0.3441 (5)	0.5051 (4)	0.9746 (2)	0.0247 (8)
C7	0.3406 (6)	0.3334 (4)	0.9631 (2)	0.0287 (8)
C8	0.3629 (7)	0.2676 (4)	0.8739 (2)	0.0344 (9)
H8A	0.5049	0.2517	0.8620	0.041*
H8B	0.2977	0.1651	0.8717	0.041*
C9	0.0596 (6)	0.3734 (6)	0.8058 (3)	0.0479 (11)
H9A	0.0069	0.2681	0.8008	0.057*
H9B	0.0145	0.4357	0.7574	0.057*
H9C	0.0127	0.4202	0.8589	0.057*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0278 (4)	0.0258 (4)	0.0235 (4)	-0.0017 (4)	0.0001 (4)	0.0021 (4)
01	0.064 (2)	0.0348 (15)	0.0317 (15)	0.0023 (14)	0.0011 (14)	0.0103 (13)
O2	0.0234 (13)	0.0411 (15)	0.0358 (14)	-0.0007 (12)	0.0056 (12)	-0.0005 (11)
O3	0.0352 (16)	0.0381 (15)	0.0313 (14)	0.0037 (12)	-0.0035 (12)	0.0094 (12)
N1	0.0404 (19)	0.0290 (15)	0.0254 (16)	-0.0083 (13)	0.0017 (16)	-0.0002 (15)
C1	0.0183 (19)	0.0256 (17)	0.0288 (18)	-0.0021 (15)	0.0017 (15)	-0.0007 (14)
C2	0.025 (2)	0.029 (2)	0.037 (2)	-0.0005 (16)	-0.0019 (17)	-0.0006 (16)
C3	0.024 (2)	0.034 (2)	0.049 (3)	0.0015 (16)	-0.0018 (18)	-0.0111 (19)
C4	0.027 (2)	0.047 (3)	0.036 (2)	0.0051 (18)	-0.0013 (17)	-0.0170 (19)
C5	0.028 (2)	0.040 (2)	0.0242 (18)	0.0044 (16)	0.0009 (15)	-0.0044 (15)
C6	0.0243 (19)	0.0281 (19)	0.0218 (16)	0.0013 (13)	-0.0004 (15)	-0.0021 (13)
C7	0.033 (2)	0.0288 (19)	0.0246 (18)	0.0029 (16)	0.0000 (16)	0.0040 (15)
C8	0.055 (3)	0.0204 (17)	0.0274 (18)	0.0010 (19)	0.0067 (19)	0.0033 (14)
C9	0.040 (3)	0.067 (3)	0.037 (2)	-0.027 (2)	-0.003 (2)	0.005 (2)
Geometric para	meters (Å, °)					
S1—O2		1.428 (3)	C3—	H3	0.95	00
S1—O3		1.430 (3)	C4—	C5	1.393	3 (6)
S1—N1		1.629 (3)	C4—	H4	0.95	00
S1—C1		1.760 (4)	С5—	C6	1.39	0 (5)
O1—C7		1.207 (4)	C5—	H5	0.95	00
N1—C9		1.481 (5)	С6—	C7	1.494	4 (5)
N1—C8		1.487 (5)	С7—	C8	1.51	9 (5)
C1—C2		1.380 (5)	C8—	H8A	0.99	00
C1—C6		1.407 (5)	C8—	H8B	0.99	00
C2—C3		1.395 (5)	С9—	H9A	0.98	00
С2—Н2		0.9500	С9—	H9B	0.98	00
C3—C4		1.379 (6)	С9—	Н9С	0.98	00
O2—S1—O3		118.66 (16)	С6—	C5—C4	120.2	2 (4)
O2—S1—N1		108.48 (17)	С6—	С5—Н5	119.9)
O3—S1—N1		107.92 (18)	C4—	С5—Н5	119.9)
O2—S1—C1		108.16 (16)	С5—	C6—C1	118.	5 (3)
O3—S1—C1		109.45 (17)	С5—	C6—C7	118.9) (3)
N1—S1—C1		103.05 (16)	C1—	C6—C7	122.	6 (3)
C9—N1—C8		114.2 (3)	01—	С7—С6	121.3	8 (3)
C9—N1—S1		115.5 (3)	01—	С7—С8	119.4	4 (3)
C8—N1—S1		111.5 (3)	С6—	С7—С8	118.7	7 (3)
C2—C1—C6		121.1 (3)	N1—	-C8C7	113.8	3 (3)
C2-C1-S1		119.6 (3)	N1—	-C8—H8A	108.3	3
C6—C1—S1		119.3 (3)	С7—	C8—H8A	108.3	3
C1—C2—C3		119.8 (4)	N1—	-C8—H8B	108.3	3
С1—С2—Н2		120.1	С7—	C8—H8B	108.3	3
С3—С2—Н2		120.1	H8A-		107.	7

C4—C3—C2	119.6 (4)	N1—C9—H9A	109.5
С4—С3—Н3	120.2	N1—C9—H9B	109.5
С2—С3—Н3	120.2	H9A—C9—H9B	109.5
C3—C4—C5	120.9 (4)	N1—C9—H9C	109.5
С3—С4—Н4	119.6	Н9А—С9—Н9С	109.5
С5—С4—Н4	119.6	Н9В—С9—Н9С	109.5
O2—S1—N1—C9	-170.5 (3)	C3—C4—C5—C6	2.0 (6)
O3—S1—N1—C9	-40.7 (3)	C4—C5—C6—C1	-0.3 (5)
C1—S1—N1—C9	75.0 (3)	C4—C5—C6—C7	-178.7 (3)
O2—S1—N1—C8	57.0 (3)	C2—C1—C6—C5	-1.6 (5)
O3—S1—N1—C8	-173.3 (2)	S1—C1—C6—C5	176.6 (3)
C1—S1—N1—C8	-57.5 (3)	C2—C1—C6—C7	176.8 (3)
O2—S1—C1—C2	93.8 (3)	S1—C1—C6—C7	-5.0 (5)
O3—S1—C1—C2	-36.9 (3)	C5—C6—C7—O1	0.0 (6)
N1—S1—C1—C2	-151.5 (3)	C1—C6—C7—O1	-178.3 (4)
O2—S1—C1—C6	-84.5 (3)	C5—C6—C7—C8	-178.2 (3)
O3—S1—C1—C6	144.9 (3)	C1—C6—C7—C8	3.4 (6)
N1—S1—C1—C6	30.3 (3)	C9—N1—C8—C7	-70.9 (5)
C6—C1—C2—C3	1.7 (6)	S1—N1—C8—C7	62.3 (4)
S1—C1—C2—C3	-176.5 (3)	O1—C7—C8—N1	149.6 (4)
C1—C2—C3—C4	-0.1 (6)	C6—C7—C8—N1	-32.2 (5)
C2—C3—C4—C5	-1.8 (6)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C5—H5···O3 ⁱ	0.95	2.55	3.467 (5)	164
C8—H8A···O3 ⁱⁱ	0.99	2.42	3.240 (5)	140
C9—H9A···O3 ⁱⁱⁱ	0.98	2.40	3.226 (5)	141
C8—H8A···O2	0.99	2.58	2.933 (5)	101
С9—Н9В…О3	0.98	2.49	2.865 (5)	102
Summatry adds: (i) $-m \pm 1/2$ $-m \pm 1/2$: (ii) $-m \pm 1/2$: (iii)	$1 \rightarrow \frac{1}{2} = \frac{1}{2} - \frac{1}{2}$	(iii) $-\pi - 1/2 = -+2$	2/2	

Symmetry codes: (i) -x+1/2, -y+1, z+1/2; (ii) -x+1, y-1/2, -z+3/2; (iii) -x, y-1/2, -z+3/2.

